Industry progress: The quest for more natural implants in terms of material, shape, and structure
Frankly, the poor fit of most implants offered today is not the only problem. We are also still replacing the bone in our bodies with foreign materials, and in fact, 75% of us will, at some point in our lives, be living with parts of our bodies that we were not born with.
One of the most commonly used materials for bone reconstruction today is titanium, and standardized implants that are also a foreign material to the patient’s body entail high complication and re-surgery rates. Namely, because titanium implants can release trace materials over time, cause irritation, immunological response, and infection, while polymer (plastic) implants lack osseointegration (the integration of the implant with native bone), and are prone to infection.
Meanwhile, human bones are made from 60-70% bone mineral, 10-20% water, and proteins and inorganic salts. Great progress is being made to develop functional and effective implants made from the natural minerals found in native human bone. That is, bioceramic materials such as tricalcium phosphate and hydroxyapatite. This means that more patients could receive an implant that can become a natural part of his or her body, as the implant will remodel and integrate with native tissue.
Notably, Ossiform’s initial pre-clinical trials in mice models demonstrated that the natural tricalcium phosphate implants not only fused with native tissue after eight weeks, but also developed new bone, bone marrow, and blood vessels within the implant (view article).
Using the unique power of the body to regenerate itself, the scaffold allows its cells to transform the implant into real living bone.